345. Amidines. Part II. Diamidines from Di-imidochlorides derived from Diamines.

By H. K. S. Rao and T. S. Wheeler.

Diamidines of the types $\mathrm{NRR}^{\prime} \cdot \mathrm{CPh}: \mathrm{N}^{2} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~N}: \mathrm{CPh} \cdot \mathrm{NRR}^{\prime}$ and $\mathrm{NRR}^{\prime} \cdot \mathrm{CPh}: \mathrm{N}^{\cdot} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~N}: \mathrm{CPh} \cdot \mathrm{NRR}^{\prime}$
have been prepared.
Di-imidochlorides, from diamines, and the corresponding diamidines have hitherto been unknown. The dibenzoyl derivatives of benzidine and of m - and p-phenylenediamines have now been converted into the corresponding di-imidochlorides, which have been condensed, by Shah's modified method (J. Indian Inst. Sci., 1924, 7, 215), with a number of amines to yield diamidines of the types $\mathrm{NRR}^{\prime} \cdot \mathrm{CPh} \cdot \mathrm{N}^{\prime} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~N}: \mathrm{CPh}^{2} \cdot \mathrm{NRR}^{\prime}$ and $\mathrm{NRR}^{\prime} \cdot \mathrm{CPh}: \mathrm{N}^{\prime} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~N}: \mathrm{CPh} \cdot \mathrm{NRR}^{\prime}$.

Dinitriles also have been obtained from the di-imidochlorides derived from benzidine 50
and p-phenylenediamine, by treating them with potassium cyanide (cf. Mumm, Volquartz, and Hesse, Ber., 1914, 47, 751).

Dibenzbenzididedi-imidochloride.-A mixture of dibenzoylbenzidine (25 g.), phosphorus pentachloride (30 g.), and nitrobenzene ($30 \mathrm{c} . \mathrm{c}$.) was heated under reflux (calcium chloride guard-tube) until a clear liquid was produced. The yellow crystals (22 g .) obtained at room temperature after 12 hours were washed with light petroleum and kept under reduced pressure over phosphoric oxide and paraffin wax for 24 hours; m. p. 212° (Found : Cl, 16.6. $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{Cl}, 16 \cdot 6 \%$).
$\mathrm{NN}^{\prime}-$-Di-(α-o-chlovoanilinobenzylidene)benzidine.-A mixture of the di-imidochloride (5 g.$\left.\right)$, o-chloroaniline (3.2 g .), and diethylaniline ($10 \mathrm{c} . \mathrm{c}$.) which had been heated at 100° for 2 hours was poured into excess of dilute hydrochloric acid ($1: 1$), and after 2 hours the insoluble hydrochloride was decomposed with concentrated aqueous ammonia at 100°; the base crystallised from toluene in yellowish clusters of needles, m. p. 234° (Found: $\mathrm{Cl}, 11.3$. $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{Cl}_{2}$ requires $\mathrm{Cl}, 11 \cdot 6 \%$). The yellow picrate separated slowly from mixed solutions of the base and picric acid in hot chlorobenzene; m. p. 229-230 (decomp.) (Found: Cl , $6.9 . \mathrm{C}_{38} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{Cl}_{2}, 2 \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{Cl}, 6 \cdot 6 \%$).

The following di-amidines were similarly prepared. They were yellowish in colour and were crystallised from chlorobenzene or toluene: Di-(α-methylanilinobenzylidene)benzidine, m. p. 234° (Found: $\mathrm{N}, 10 \cdot \mathrm{I} . \mathrm{C}_{40} \mathrm{H}_{34} \mathrm{~N}_{4}$ requires $\mathrm{N}, 9 \cdot 8 \%$); picrate, m. p. 248° (decomp.) (Found: $\mathrm{N}, 13 \cdot 7 . \quad \mathrm{C}_{40} \mathrm{H}_{34} \mathrm{~N}_{4}, 2 \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\left.\mathrm{N}, 13.6 \%\right)$. Di-(α-ethylanilinobenzylidene)benzidine, m. p. 203° (Found: $\mathrm{N}, 9 \cdot 6 . \mathrm{C}_{42} \mathrm{H}_{38} \mathrm{~N}_{4}$ requires $\mathrm{N}, 9 \cdot 4 \%$); picrate, m. p. 235° (decomp.) (Found: $\mathrm{N}, 13 \cdot 2 . \mathrm{C}_{42} \mathrm{H}_{38} \mathrm{~N}_{4}, 2 \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{N}, 13 \cdot 3 \%$). Di-(α-benzylanilinobenzylidene)benzidine, m. p. 174° (Found: C, $86 \cdot 6 ; \mathrm{H}, 6.2 . \mathrm{C}_{52} \mathrm{H}_{42} \mathrm{~N}_{4}$ requires C, $86 \cdot 4 ; \mathrm{H}$, $5 \cdot 8 \%$) ; picrate, m. p. 185° (decomp.) (Found: $\mathrm{N}, 11 \cdot 8 . \mathrm{C}_{52} \mathrm{H}_{42} \mathrm{~N}_{4}, 2 \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires N , 11.9%). Di-(α-diphenylaminobenzylidene)benzidine, m. p. 262° (Found: $\mathrm{N}, 8.6 . \mathrm{C}_{50} \mathrm{H}_{38} \mathrm{~N}_{4}$ requires $\mathrm{N}, 8.1 \%$) ; picrate, m. p. 234° (Found: N , $11.5 . \mathrm{C}_{50} \mathrm{H}_{38} \mathrm{~N}_{4}, 2 \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires N , $12 \cdot 1 \%$). Di-(α-ethyl-o-toluidinobenzylidene)benzidine, m. p. 200° (Found: C, $84 \cdot 5 ; \mathrm{H}, 6.8$. $\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{~N}_{4}$ requires C, $84 \cdot 4 ; \mathrm{H}, 6.7 \%$). Di-(α-ethyl-p-toluidinobenzylidene)benzidine, m. p. 221° (Found: C, 84.2; H, 6.5; $\mathrm{N}, 8.8 . \mathrm{C}_{44} \mathrm{H}_{42} \mathrm{~N}_{4}$ requires C, 84.4; $\mathrm{H}, 6.7 ; \mathrm{N}, 8.9 \%$). The picrates separate as oils in the last two cases.
NN^{\prime}-Di-(α-aminobenzylidene)benzidine, obtained by shaking a mixture of the di-imidochloride (20 g .) and a concentrated solution of ammonia in methyl alcohol (150 c.c.) for 48 hours, crystallised from pyridine in yellow needles, m. p. 252° (Found: C, 79.8 ; H, 5.9 ; N, 14.0. $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4}$ requires C, $80 \cdot 0 ; \mathrm{H}, 5 \cdot 6 ; \mathrm{N}, 14 \cdot 3 \%$).

Dibenz-p-phenylenediamidedi-imidochloride was prepared from a mixture of dibenzoyl-pphenylenediamine (50 g .), phosphorus pentachloride (75 g .), and nitrobenzene ($40 \mathrm{c} . \mathrm{c}$.), washed with dry light petroleum, and dried as before; m. p. 176° (Found: Cl, 21.0. $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{Cl}, 20 \cdot 1 \%$).

The following diamidines were prepared as described above. NN^{\prime}-Di-(α-methylanilino-benzylidene)-p-phenylenediamine, m. p. 264° (Found: $\mathrm{N}, 10 \cdot 8 . \mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{4}$ requires $\mathrm{N}, 11 \cdot 3 \%$); picrate, m. p. 243° (decomp.) (Found: $\mathrm{N}, \mathbf{1 4 \cdot 5} . \mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{4}, 2 \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{N}, 14 \cdot 7 \%$). Di-(α-benzylanilinobenzylidene)-p-phenylenediamine, m. p. 203° (Found: C, $85 \cdot 7 ; \mathrm{H}, 6.0$; N, 8.9. $\mathrm{C}_{46} \mathrm{H}_{38} \mathrm{~N}_{4}$ requires $\mathrm{C}, 85 \cdot 4 ; \mathrm{H}, 5.9 ; \mathrm{N}, 8.7 \%$) ; picrate, m. p. 220° (decomp.) (Found: N , 12.8. $\quad \mathrm{C}_{46} \mathrm{H}_{38} \mathrm{~N}_{4}, 2 \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{7} \mathrm{~N}_{3}$. requires $\left.\mathrm{N}, \quad 12 \cdot 7 \%\right)$. Di-(α-methyl-o-toluidinobenzylidene)-pphenylenediamine, m. p. 227° (Found: C, $82.7 ; \mathrm{H}, 6.7 ; \mathrm{N}, 10 \cdot 8 . \mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{4}$ requires C, $82 \cdot 8$; $\mathrm{H}, 6.5$; $\mathrm{N}, 10.7 \%$) ; picrate, m. p. 236° (decomp.) (Found: $\mathrm{N}, 13.7 . \mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{4}, 2 \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{N}, 14 \cdot 3 \%$). Di-(α-ethyl-o-toluidinobenzylidene)-p-phenylenediamine, m. p. 186° (Found : C, $83.0 ; \mathrm{H}, 6.9 . \mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{4}$ requires C, 82.9 ; H, 6.9%); picrate, m. p. 237° (decomp.) (Found : $\mathrm{N}, 14 \cdot 0 . \quad \mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{4}, 2 \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{N}, 13 \cdot 9 \%$).

When the clear solution obtained by heating a mixture of dibenzoyl- m-phenylenediamine (10 g .) and phosphorus pentachloride (14 g .) was cooled, dibenz-m-phenylenediamidedi-imidochloride (6 g .) crystallised in greyish clusters of needles. It was washed with dry light petroleum and dried as usual; m. p. 86° (Found : $\mathrm{Cl}, 19 \cdot 5 . \quad \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{Cl}, 20 \cdot 1 \%$).

Di-(α-benzylanilinobenzylidene)-m-phenylenediamine had m. p. 129-130 (Found: C, 84.8; $\mathrm{H}, 6 \cdot 2 . \quad \mathrm{C}_{46} \mathrm{H}_{38} \mathrm{~N}_{4}$ requires $\left.\mathrm{C}, 85 \cdot 4 ; \mathrm{H}, 5 \cdot 9 \%\right)$; the picrate separated as a paste.
NN^{\prime}-Di-(α-cyanobenzylidene $)$ benzidine was obtained by heating a mixture of dibenzbenzidide-di-imidochloride (2.5 g .) and methyl-alcoholic potassium cyanide (2 g . in $100 \mathrm{c.c}$.) under reflux for about 15 minutes; crystallised from toluene, it had m. p. 252° (Found: C, $82.0 ; \mathrm{H}, 4.6$. $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{4}$ requires C, $8 \mathrm{I} \cdot 9 ; \mathrm{H}, 4 \cdot 4 \%$).

The Constitution of Natural Phenolic Resins. Part IX. 1645

NN^{\prime}-Di-(α-cyanobenzylidene)-p-phenylenediamine, prepared from dibenz- p-phenylenediamide-di-imidochloride as described above and crystallised from toluene, had m. p. 236° (Found : C, $78 \cdot 6 ; \mathrm{H}, 4 \cdot 2 . \mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{4}$ requires C, $79 \cdot 0 ; \mathrm{H}, 4 \cdot 2 \%$).

The authors' thanks are due to Dr. R. C. Shah for his valuable advice.

